Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia.

نویسندگان

  • Zoltan Ungvari
  • Lora Bailey-Downs
  • Tripti Gautam
  • Rosario Jimenez
  • Gyorgy Losonczy
  • Cuihua Zhang
  • Praveen Ballabh
  • Fabio A Recchia
  • Donald C Wilkerson
  • William E Sonntag
  • Kevin Pearson
  • Rafael de Cabo
  • Anna Csiszar
چکیده

Hyperglycemia in diabetes mellitus promotes oxidative stress in endothelial cells, which contributes to development of cardiovascular diseases. Nuclear factor erythroid 2-related factor-2 (Nrf2) is a transcription factor activated by oxidative stress that regulates expression of numerous reactive oxygen species (ROS) detoxifying and antioxidant genes. This study was designed to elucidate the homeostatic role of adaptive induction of Nrf2-driven free radical detoxification mechanisms in endothelial protection under diabetic conditions. Using a Nrf2/antioxidant response element (ARE)-driven luciferase reporter gene assay we found that in a cultured coronary arterial endothelial cell model hyperglycemia (10-30 mmol/l glucose) significantly increases transcriptional activity of Nrf2 and upregulates the expression of the Nrf2 target genes NQO1, GCLC, and HMOX1. These effects of high glucose were significantly attenuated by small interfering RNA (siRNA) downregulation of Nrf2 or overexpression of Keap-1, which inactivates Nrf2. High-glucose-induced upregulation of NQO1, GCLC, and HMOX1 was also prevented by pretreatment with polyethylene glycol (PEG)-catalase or N-acetylcysteine, whereas administration of H(2)O(2) mimicked the effect of high glucose. To test the effects of metabolic stress in vivo, Nrf2(+/+) and Nrf2(-/-) mice were fed a high-fat diet (HFD). HFD elicited significant increases in mRNA expression of Gclc and Hmox1 in aortas of Nrf2(+/+) mice, but not Nrf2(-/-) mice, compared with respective standard diet-fed control mice. Additionally, HFD-induced increases in vascular ROS levels were significantly greater in Nrf2(-/-) than Nrf2(+/+) mice. HFD-induced endothelial dysfunction was more severe in Nrf2(-/-) mice, as shown by the significantly diminished acetylcholine-induced relaxation of aorta of these animals compared with HFD-fed Nrf2(+/+) mice. Our results suggest that adaptive activation of the Nrf2/ARE pathway confers endothelial protection under diabetic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperglycemia- Induced NF-κB Activation Increases microRNA-146a Expression in Human Umbilical Vein Endothelial Cells

Background & objectives: Nuclear Factor kappa B (NF-κB), a master switch transcription factor, plays a critical role in the progression and development of hyperglycemia-induced microangiopathy. Hyperglycemia activates NF-κB, and subsequently increases pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β leading to development of inflammation. Some new studies have revealed the involvement o...

متن کامل

Activation of NF-E2–Related Factor-2 Reverses Biochemical Dysfunction of Endothelial Cells Induced by Hyperglycemia Linked to Vascular Disease

OBJECTIVE Sulforaphane is an activator of transcription factor NF-E2-related factor-2 (nrf2) that regulates gene expression through the promoter antioxidant response element (ARE). Nrf2 regulates the transcription of a battery of protective and metabolic enzymes. The aim of this study was to assess whether activation of nrf2 by sulforaphane in human microvascular endothelial cells prevents meta...

متن کامل

Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor activated by a range of oxidants and electrophiles. The transcriptional response to endogenous oxidative cues by Nrf2 plays an important role in mammalian redox physiology and oxidative pathology. Hyperglycemia induces oxidative stress in the heart where it leads to apoptosis and ultimately cardiomyopathy. Here we inve...

متن کامل

Expression of stress-response ATF3 is mediated by Nrf2 in astrocytes

Activating Transcription Factor 3 (ATF3), a member of the ATF/CREB family, is induced rapidly by various stresses. Its induction mechanism and role in response to changes in cellular redox status, however, have not been elucidated. Here, we found that NF-E2-related factor 2 (Nrf2), a transcription factor known to bind to antioxidant response element (ARE) in promoters, transcriptionally upregul...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 300 4  شماره 

صفحات  -

تاریخ انتشار 2011